

PAINTS, VARNISHES AND COATINGS

UN CPC code: 3511

PCR-2021-0005

Valid until: 2027-02-23

Date: 2022-02-24

Version 1.00

TABLE OF CONTENTS

Product	category	pag 3
System System	boundaries	pag 5
Data an	d rules for the CFP studies	pag 8
PCR app	olicability	pag 12
Comple	mentary information	pag 15

PRODUCT CATEGORY

- 1. Product category definition
- 2. Product category description
- 3. Declared Unit
- 4. Product lifetime

1. Product category definition

This document provides Product Category Rules (PCR) for the assessment of the impact on climate change of paints, varnishes and coatings and the declaration of this performance by a CFP. The product category corresponds to UN CPC 3511 Paints and varnishes and related products.

The product category is defined under UNSD-CPC Ver 2.1 classification:

Division 35: Other chemical products; man-made fibres.

351: Paints and varnishes and related products; artists' colours; ink 3511: Paints and varnishes and related products

Paints and varnishes for construction products are excluded from the scope of the present PCR, since these products are covered by PCR on construction products of other programme operators (e.g. PCR-001 Construction products and services of EPDItaly).

The definition of «Construction products» includes all the products that are manufactured and marketed with the purpose of becoming a fixed and permanent part in the construction works, or part of them, and whose presence and role within the work manifests itself with effect on the work performances, with respect to the specific basic technical requirements of the work.

Within the present PCR, the following terminology is adopted:

- The term "shall" is used to indicate what is obligatory.
- The term "should" is used to indicate a recommendation, rather than a requirement.
- The term "may" or "can" is used to indicate an option that is permissible.

For the definition of terms used in the document, see the normative standards.

2. Product category description

The product category includes paints, varnishes and coating systems, aimed at:

- automotive interior;
- protection/decoration/functional properties for wood, metal and plastic articles.

3. Declared Unit

The declared unit is 1 kg of unpacked product, regardless of its state (solid, liquid, gas), as its specific density is considered.

4. Product lifetime

Not applicable for this product category.

SYSTEM BOUNDARIES

- 1. Diagram
- 2. Upstream
- 3. Core

Carbon Footprint Italy follows an approach that includes all attributional processes from "cradle to grave", using the "limited loss of information at the final product" principle. This is especially important in the case of business-to-consumer communication.

The scope of this PCR and of CFPs based on this document is **cradle to gate**.

For the purpose of different data quality rules and for the presentation of results, the life cycle of products is split into two different life cycle stages:

- Upstream processes (from cradle-to-gate);
- Core processes (from gate-to-gate).

In the CFP, the impact on climate change associated to each of the two life-cycle stages mentioned above shall be reported separately.

1. Diagram

UPSTREAM

- Extraction of products' raw material, including the production of semi-finished and auxiliary products
- Production of the finished product's packaging

CORE

- Transportation of raw materials and semifinished products along the entire supply chain Refrigerant gases release
- Manufacturing of the finished
- Energy and water consumption of manufacturing site
- Treatment and transportation of waste from manufacturing site to treatment facility
- Emissions into air and water

Figure 1 - System diagram illustrating the processes that are included in the product system, divided into upstream and core processes.

2. Upstream

The following attributional processes are part of the product system and classified as upstream processes:

- Extraction of products 'raw material, including the production of semi-finished and auxiliary products;
- Production of the finished product's packaging.

3. Core

The following attributional processes are part of the product system and classified as core processes:

- Transportation of raw materials and semi-finished products along the entire supply chain; in the event that assembly is done at several sites in series, transport between each site must be considered;
- Manufacturing of the finished products;
- Energy and water consumption of manufacturing site;
- Treatment and transportation of waste from manufacturing site to treatment facility;
- Emissions into air and water.

The technical system shall not include:

- Manufacturing of production equipment, buildings and other capital goods;
- Business travel of personnel;
- Travel to and from work by personnel;
- Research and development activities.

DATA AND RULES FOR THE CFP STUDIES

- 1. Specific data or calculation rules
- 2. Cut-off rules
- 3. Allocation rules

Specific data or calculation rules Specific data

A CFP calculation requires two different kinds of information:

- data related to the environmental aspects of the considered system (such as materials or energy flows that enter the production system). These data shall come from the company that is performing the CFP calculation.
- data related to the life cycle impacts of the material or energy flows that enter the production system. Generic data can be used if specific data are not available.

Data on environmental aspects shall be as specific as possible and shall be representative of the studied process.

Data on the life cycle of materials or energy inputs are classified into three categories – specific data, selected generic data, and proxy data, defined as follows:

- primary data (also referred to as "site-specific data") data gathered from the actual manufacturing plant where product-specific processes are carried out, and data from other parts of the life cycle traced to the specific product system under study, e.g. materials or electricity provided by a contracted supplier that is able to provide data for the actual delivered services, transportation that takes place based on actual fuel consumption, and related emissions, etc.
- secondary data data from commonly available data sources (e.g. commercial databases and free databases) that fulfill prescribed data quality characteristics for precision, completeness, and, proxy data from commonly available data sources (e.g. commercial databases and free databases) that do not fulfill all of the data quality characteristics of "selected generic data".

As a general rule, specific data shall always be used, if available, after performing a data quality assessment.

The attributional LCA approach in Carbon Footprint Italy forms the basic prerequisites for selecting generic data. To allow the classification of generic data as "selected generic data", they shall fulfill selected prescribed characteristics for precision, completeness, and representativeness (temporal, geographical, and technological), such as:

- the reference year must be as current as possible and preferably assessed to be representative for at least the validity period of the CFP,
- the cut-off criteria to be met on the level of the modelled product system are the qualitative coverage of at least 99% of energy, mass, and overall environmental relevance of the flows,

- completeness in which the inventory data set should, in principle, cover all elementary flows that contribute to a relevant degree of GHG emissions.

1.2 Calculation rules

The following requirements apply to the study:

- Data referring to processes and activities upstream in a supply chain over which an organisation has direct management control shall be specific and collected on site.
- Data referring to contractors that supply main parts, packaging, or main auxiliaries should be requested from the contractor as specific data, as well as infrastructure, where relevant.
- In case specific data is lacking, selected generic data may be used. If this is also lacking, proxy data may be used.
- For the electricity used in the processes, electricity production impacts shall be accounted for in this priority when specific data are used in the processes:
 - Specific electricity mix as generated, or purchased, from an electricity supplier, demonstrated by a Guarantee of Origin (or similar, where reliability, traceability, and the avoidance of double-counting are ensured) as provided by the electricity supplier. If no specific mix is purchased, the residual electricity mix from the electricity supplier shall be used¹.
 - 2. National residual electricity mix or residual electricity mix on the market
 - 3. National electricity production mix or electricity mix on the market.

The mix of electricity used in upstream processes shall be documented in the CFP study report, where relevant.

- Transport from the final delivery point of raw materials, chemicals, main parts, and components (see above regarding upstream processes) to the manufacturing plant/place of service provision should be based on the actual transportation mode, distance from the supplier, and vehicle load, if available.
- Waste treatment processes of manufacturing waste should be based on specific data, if available.

¹ The residual electricity mix is the mix when all contract-specific electricity that has been sold to other customers has been subtracted from the total production mix of the electricity supplier.

2. Cut-off rules

Data for elementary flows to and from the product system contributing to a minimum of 99% of the declared environmental impacts shall be included (not including processes that are explicitly outside the system boundary as described in the relevant Section).

The check for cut-off rules in a satisfactory way is through the combination of expert judgment based on experience of similar product systems and a sensitivity analysis in which it is possible to understand how the un-investigated input or output could affect the final results.

3. Allocation rules

The following stepwise procedure shall be applied for multifunctional products and multiproduct processes:

- 1. Allocation shall be avoided, if possible, by dividing the unit process into two or more sub-processes and collecting the environmental data related to these sub-processes.
- 2. If allocation cannot be avoided, the inputs and outputs of the system shall be partitioned between its different products or functions in a way that reflects the underlying physical relationships between them; i.e. they should reflect the way in which the inputs and outputs are changed by quantitative changes in the products or functions delivered by the system.
- 3. Where physical relationships alone cannot be established or used as the basis for allocation (or they are too time consuming), the most suitable allocation procedure shall be used and documented.

In accordance with other existing programme operators, the methodological choices for allocation for reuse, recycling and recovery have been set according to the polluter pays principle (PPP). This means that the generator of the waste shall carry the full climate impact until the point in the product's life cycle at which the waste is transported to a scrapyard or gate of a waste processing plant (collection site). The subsequent user of the waste shall carry the climate impact from the processing and refinement of the waste but not the impact caused in the "earlier" life cycles.

PCR APPLICABILITY

- 1. Impact category indicator results
- 2. PCR use for EPD purpose

This document constitutes the Product Category Rules (PCR²) developed by Carbon Footprint Italy with a technical collaboration with EPDItaly (www.epditaly.it/en) for the additional EPD impact categories.

The requirements described in this Product Category Rules (PCR) are specified in addition to the ones indicated in the ISO standard 14067. Therefore, both the PCR and the ISO 14067 requirements shall be fulfilled in order to register to Carbon Footprint Italy.

In fact, this PCR was conceived and developed for CFP studies. Anyway, it can also be used for EPD (Environmental Product Declaration); to do this, the additional specific regulations required by the programme operator selected for the EPD registration should be followed as well (see Section 2).

So, in this PCR only the parameter reported in Section "Impact category indicator results" shall be included.

1. Impact category indicator results

The present PCR is aimed at the development of CFP. Therefore, a special focus is on the "Global Warming Potential" indicator.

The specific GHG emissions and removals treatment in the CFP or partial CFP that shall be quantified and documented separately in the CFP study report are reported in the ISO 14067:2018, Table 1 of chapter 6.4.9.8.

Four GWP indicators shall be declared, which differentiates greenhouse gases depending on their origin: GWP-fossil, GWP-biogenic emissions, GWP-land use and land use change (dLUC), and GWP-biogenic removals, in accordance with the mentioned ISO 14067:2018 standard.

It should be noted that other impact categories can be relevant for the product category under assessment, other than the "Global Warming Potential" category. Therefore, in order to integrate the CFP results and to provide a broader view of the product environmental impacts, more impact categories shall be evaluated. The detail of this option are outlined in the following sections.

² Product Category Rules (PCRs) are documents that provide the rules, requirements and guidelines for developing a CFP study for a specific product category. PCRs are necessary to ensure uniformity of methodological approach to studies and to allow comparability between CFP studies related to products of the same category. The PCR development process is described in the "PQ04 PCR development" procedure, which can be downloaded in the dedicated section of the website. This PCR follows the requirements of ISO/TS 14027, ISO 14067 and ISO 14025.

2. PCR use for EPD purpose

This PCR was conceived and developed for CFP studies. Anyway, it can also be used for EPD (Environmental Product Declaration); to do this, other predetermined parameters required by the programme operator selected for the EPD registration shall be followed. These parameters are:

- other impact category indicator results (see table 1 and following);
- inventory results that are elementary flows;
- data that do not represent elementary flows;
- additional environmental information.

Impact category	Impact indicator	Unit of measurement	
Climate change - total	Global Warming Potential total (GWP-total)	kg of CO₂ equivalent	
Ozone Depletion	Depletion potential of the stratospheric ozone layer (ODP)	kg of CFC-11 equivalents	
Acidification	Acidification potential, Accumulated Exceedance (AP)	moles of H+ equivalents	
Eutrophication of water	Eutrophication potential, fraction of nutrients reaching freshwater end compartment (EP-freshwater)	kg of P equivalent	
Eutrophication aquatic marine	Eutrophication potential, fraction of nutrients reaching marine end compartment (EP-marine)	kg of N equivalent	
Eutrophication terrestrial	Eutrophication potential, accumulated exceedance (EP-terrestrial)	mol of N equivalent	
Photochemical ozone formation	Formation potential of tropospheric ozone (POCP)	kg of NMVOC equivalents	
Depletion of abiotic resources - minerals and materials	Abiotic Depletion for non-fossil resources potential (ADP-minerals&metals)	kg of Sb equivalents	
Depletion of abiotic resources - fossil resources	Abiotic Depletion for fossil resources potential (ADP-fossil)	MJ, calculated using net calorific values	
Water use	Water deprivation potential, deprivation-weighted water consumption (WDP)	m³ equivalents	

TABLE 1: OTHER IMPACT CATEGORY

The environmental impact indicators must be determined using the characterisation factors and impact assessment methods specified in EN 15804:2012+A2:2019.

Parameters	Unit of measurement
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material (PENRE)	MJ, net calorific value
Use of renewable primary energy excluding renewable primary energy resources used as raw material (PERE)	MJ, net calorific value
Use of non-renewable primary energy resources used as raw material (PENRM)	MJ, net calorific value
Use of renewable primary energy resources used as raw material (PERM)	MJ, net calorific value
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials) (PENRT)	MJ, net calorific value
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials) (PERT)	MJ, net calorific value
Net use of fresh water (FW)	m³
Use of secondary raw materials (MS)	kg
Use of renewable secondary fuels (RSF)	MJ
Use of non-renewable secondary fuels (NRSF)	MJ

TABLE 2: PARAMETERS DESCRIBING RESOURCE USE

Impact category	Unit of measurement
Hazardous landfill waste (HWD)	kg
Non-hazardous waste disposed (NHWD)	kg
Radioactive waste disposed (RWD)	kg
Materials for energy recovery (MER)	kg
Material for recycling (MFR)	kg
Components for reuse (CRU)	kg
Exported thermal energy (ETE)	MJ, net calorific value
Exported electricity energy (EEE)	MJ, net calorific value

TABLE 3: WASTE PRODUCTION DESCRIPTIVE PARAMETERS

COMPLEMENTARY INFORMATION

- 1. PCR use within other programme operators
- 2. Glossary
- 3. Bibliography
- 4. Underlying studies
- 5. Other existing PCR

1. PCR use within other programme operators

Carbon Footprint Italy believes in the importance of sharing different existing experiences, and considers the different Programme Operators as organizations that cooperate for a global climate transition.

CFI maintains the copyright of the document to ensure that it is possible to publish, update when necessary, and make it available to all organisations to develop and register CFPs. Stakeholders participating in PCR development should be acknowledged in the final document and on the website.

This PCR can be openly used by each CFP or EPD Programme Operator, if the original source of the know-how is mentioned (namely, the "PCR 2021-0005", developed by Carbon Footprint Italy).

2. Glossary

CO₂ Carbon dioxide

CPC Central product classification

CFI Carbon Footprint Italy

CFP Carbon Footprint of Products

GHG Greenhouse gases

ISO International Organization for Standardization

kg kilogram

LCA Life cycle assessment

PCR Product Category Rules

UN United Nations

3. Bibliography

ISO (2000), ISO 14020:2000, Environmental labels and declarations – General principles

ISO (2017), ISO 14026:2017, Environmental labels and declarations – Principles, requirements and guidelines for communication of footprint information

ISO (2006b), ISO 14040:2006, Environmental management – Life cycle assessment – Principles and framework

ISO (2006c), ISO 14044: 2006, Environmental management – Life cycle assessment – Requirements and guidelines

ISO (2018), ISO 14067:2018, Greenhouse gases – Carbon footprint of products – Requirements and guidelines for quantification

PCR EPDItaly 001 - Construction products and services, EPDItaly

PQ 04 PCR Development, Carbon Footprint Italy

4. Underlying studies

The methodological choices made during the development of this PCR (functional unit/declared unit, system boundary, allocation methods, impact categories, data quality rules, etc.) in this PCR were primarily based on the following underlying studies:

- CFP Systematic Approach of ICRO COATINGS products, Aequilibria Srl SB, 2021
- BASF Method for Product Carbon Footprints, BASF, Version 1.1, rev1, 2021

5. Other existing PCR

As part of the development of this PCR, existing PCRs were considered in order to avoid overlaps in scope. The existence of such documents was checked in the public PCR listings of the following programmes based on ISO 14025 or similar:

- EPDItaly

The following existing PCRs were identified:

PCR name	Programme	Registration number	Scope	Motivation for exclusion
CONSTRUCTION PRODUCTS AND SERVICES	EPDItaly	001-15 version3	Core PCR	This PCR is only applicable to paints, varnishes and coating that are considered within construction products

Registration number and version: 3511 **CPC classification code:** Global Geographical scope: **PCR** moderator: Marta Mancin, Aequilibria Srl – SB, <u>mmancin@aequilibria.com</u> ICRO Coatings SpA; Aequilibria Srl - SB **PCR Committee:** The Technical-Scientific Committee of Carbon Footprint Italy and the PCR Review panel technical support of EPDItaly. The review panel may be contacted via info@carbonfootprintitaly.it 2021-10-05 **PCR** initiation phase: 2021-12-23 - 2022-01-23 **Open consultation: Publication:** 2022-02-24 2027-02-23 **Valid until:**